

PICASO-GFX2 Embedded 4DGL Graphics Controller


Datasheet

Document Date: 20th June 2010 Document Revision: 1.0

PICASO-GFX2 4DGL Graphics Controller Datasheet

Description

The **PICASO-GFX2** is a custom embedded 4DGL graphics controller designed to interface with many popular OLED and LCD display panels. Powerful graphics, text, image, animation and countless more features are built right inside the chip. It offers a simple plug-n-play interface to many 16-bit 80-Series colour LCD and OLED displays.

The chip is designed to work with minimal design effort and all of the data and control signals are provided by the chip to interface directly to the display. Simply choose your display and interface it to the PICASO-GFX2 on your application board. This offers enormous advantage to the designer in development time and cost saving and takes away all of the burden of low level design.

The PICASO-GFX2 belongs to a family of processors powered by a highly optimised soft core virtual engine, E.V.E. (Extensible Virtual Engine). **EVE** is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised to execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the EVE engine core. It is a high level language which is easy to learn and simple to understand yet powerful enough to tackle many embedded

graphics applications.

The device offers modest but comprehensive I/O features and can interface to I2C, serial, digital, buttons, joystick and many more. Provision is also made for a dedicated PWM audio output that supports audio WAV files and complex sound generation.

A basic system font is included, and unlimited customisable fonts with fixed or proportional spacing can be created using the free FONT-Tool provided.

All of the display built-in driver libraries implement and share the same high-level function interface. This allows your GUI application to be portable to different display controller types.

The software development tools such as 4DGL-Workshop3 IDE and Graphics Composer are FREE and there are no licensing requirements.

In short, the PICASO-GFX2 offers one of the most flexible embedded graphics solutions available.

Multi-Media Services	System Fonts	SD Card Driver	SPI	
Graphics Functions	System Services	FAT16 File services		
TMR0 TMR1	TMR2 TMR3	PmmC Loader	сомо	
TMR4 TMR5	TMR6 TMR7	EVE-Code Loader	COMO	
		COM0, COM1 Buffered Services	COM1	
EVE		I2C Services	I2C	
Extensible V	rtual Engine	Sound Generation	AUDIO	
		Audio Services	AUDIO	
Memory Ma	inagement	Display Drivers	DISPLAY	
SRAM	FLASH	Touch Drivers	тоисн	
14K bytes Code Execution User Variables	15K bytes User Code	GP I/O	GPIO	
User variables	Storage	Services	GPIO BUS	

Features

- Low-cost OLED, LCD and TFT display graphics user interface solution.
- Ideal as a standalone embedded graphics processor or interface to any host controller as a graphics co-processor.
- Connect to any colour display that supports an 80-Series 16 bit wide CPU interface. All data and control signals are provided.
- Built in high performance virtual processor core (EVE) with an extensive byte-code instruction set optimised for 4DGL, the high level 4D Graphics Language.
- Comprehensive set of built in graphics and multimedia services.
- Display full colour images, animations, icons and video clips.
- 15K bytes of flash memory for user code storage and 14K bytes of SRAM for user variables.
- 13 Digital I/O pins.
- I2C interface (Master).
- D0....D15, RD, WR, RS, CS Display interface
- FAT16 file services.
- 2 Asynchronous hardware serial ports with Auto-Baud feature.
- SPI interface support for SDHC/SD memory card for multimedia storage and data logging purposes (uSD with up to 2GB and SDHC memory cards starting from 4GB and above).
- 4-Wire resistive touch panel interface.
- Audio support for wave files and complex sound generation with a dedicated 16-bit PWM audio output.
- 8 x 16 bit timers with 1 millisecond resolution.
- Single 3.3 Volt Supply @25mA typical.
- Available in a 64 pin TQFP 10mm x 10mm package.
- RoHS compliant.

Applications

- General purposes embedded graphics.
- Elevator control systems.
- Point of sale terminals.
- Electronic gauges and metres.
- Test and measurement and general purpose instrumentation.
- Industrial control and Robotics.
- Automotive system displays.
- GPS navigation systems.
- Medical Instruments and applications.
- Home appliances and Smart Home Automation.
- Security and Access control systems.
- Gaming equipment..
- Aviation systems.
- HMI with touch panels.

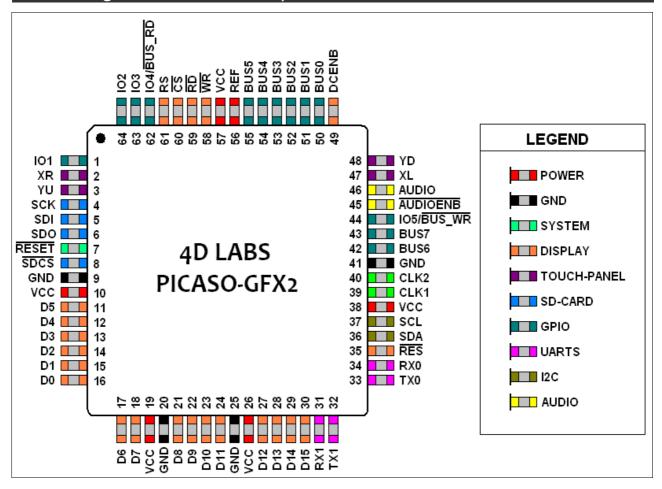


Table of Contents

1. Pin Configuration and Summary	5
2. Pin Description	8
2.1 Display Interface	
2.2 SPI Interface – Memory Card	9
2.3 Serial Ports - COM0, COM1 UARTS	10
2.4 Audio Interface	
2.5 Touch Screen Interface	11
2.6 GPIO - General Purpose IO Interface	12
2.7 System Pins	
3. Software Platform - 4DGL	
4. In Circuit Serial Programming-ICSP	17
5. Memory Organisation	17
5.1 System Registers Memory Map	
6. Memory Cards – FAT16 Format	21
7. Commente d Displayer and Dubran	21
7. Supported Displays and Drivers	
8. Development and Support Tools	22
8. Development and Support Tools	22 22
 8. Development and Support Tools	22 22 22
 8. Development and Support Tools	22 22 22 22
 8. Development and Support Tools	
 8. Development and Support Tools	
 8. Development and Support Tools	
 8. Development and Support Tools	
 8. Development and Support Tools	
 8. Development and Support Tools	
 8. Development and Support Tools	
 8. Development and Support Tools	

_

1. Pin Configuration and Summary

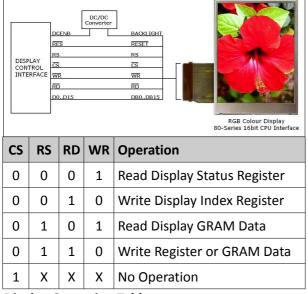
Pin	Symbol	I/O	Description
1	101	I/O	General Purpose IO1 pin. This pin is 5.0V tolerant.
2	XR	A	4-Wire Resistive Touch Screen Right signal. Connect this pin to XR or X+ signal of the touch panel.
3	YU	А	4-Wire Resistive Touch Screen Up signal. Connect this pin to YU or Y+ signal of the touch panel.
4	SCK	0	SPI Serial Clock output. SD memory card use only. Connect this pin to the SPI Serial Clock (SCK) signal of the memory card.
5	SDI	I	SPI Serial Data Input. SD memory card use only. Connect this pin to the SPI Serial Data Out (SDO) signal of the memory card.
6	SDO	0	SPI Serial Data Output. SD memory card use only. Connect this pin to the SPI Serial Data In (SDI) signal of the memory card.
7	RESET	I	Master Reset signal. Connect a 4.7K resistor from this pin to VCC.
8	SDCS	0	SD Memory-Card Chip Select. SD memory card use only. Connect this pin to the Chip Enable (CS) signal of the memory card.

Pin	Symbol	I/0	Description
9, 20, 25, 41	GND	Р	Device Ground.
10, 19, 26, 38, 57	VCC	Р	Device Positive Supply.
11	D5	I/O	Display Data Bus bit 5.
12	D4	I/O	Display Data Bus bit 4.
13	D3	I/O	Display Data Bus bit 3.
14	D2	I/O	Display Data Bus bit 2.
15	D1	I/O	Display Data Bus bit1.
16	DO	I/O	Display Data Bus bit 0.
17	D6	I/O	Display Data Bus bit 6.
18	D7	I/O	Display Data Bus bit 7.
21	D8	I/O	Display Data Bus bit 8.
22	D9	I/O	Display Data Bus bit 9.
23	D10	I/O	Display Data Bus bit 10.
24	D11	I/O	Display Data Bus bit 11.
27	D12	I/O	Display Data Bus bit 12.
28	D13	I/O	Display Data Bus bit 13.
29	D14	I/O	Display Data Bus bit 14.
30	D15	I/O	Display Data Bus bit 15.
31	RX1	I/O	General Purpose I/O Port, bit 0. This pin is 5.0V tolerant.
32	TX1	I/O	General Purpose I/O Port, bit 1. This pin is 5.0V tolerant.
33	тхо	0	Asynchronous Serial port Transmit pin, TX. Connect this pin to host micro-controller Serial Receive (Rx) signal. The host receives data from PICASO-GFX2 via this pin. This pin is 5.0V tolerant.
34	RXO	I	Asynchronous Serial port Receive pin, RX. Connect this pin to host micro-controller Serial Transmit (Tx) signal. The host transmits data to PICASO-GFX2 via this pin. This pin is 5.0V tolerant.
35	RES	0	Display RESET. PICASO-GFX2 initialises the display by strobing this pin LOW. Connect this pin to the Reset (RES) signal of the display.
36	SDA	I/O	I2C Data In/Out.
37	SCL	0	I2C Clock Output.
39	CLK1	Ι	Device Clock input 1 of a 12Mhz crystal.
40	CLK2	0	Device Clock input 2 of a 12Mhz crystal.
42	BUS6	I/O	General Purpose Parallel I/O BUS(07), bit 6. This pin is 5.0V tolerant.
43	BUS7	I/O	General Purpose Parallel I/O BUS(07), bit 7. This pin is 5.0V tolerant.
44	IO5/BUS_WR	I/O	General Purpose IO5 pin. Also used for BUS_WR signal to write and latch the data to the parallel GPIO BUS(07).
45	AUDENB	0	Audio Enable. Connect this pin to amplifier control. LOW: Enable external Audio amplifier. HIGH : Disable external Audio amplifier.
46	AUDIO	0	Pulse Width Modulated (PWM) Audio output. Connect this pin to a 2

_

Pin	Symbol	I/O	Description
			stage low pass filter then into an audio amplifier.
47	XL	0	4-Wire Resistive Touch Screen Left signal. Connect this pin to XL or X-signal of the touch panel.
48	YD	0	4-Wire resistive touch screen bottom signal. Connect this pin to YD or Y- signal of the touch panel.
49	DCENB	0	 DC-DC high voltage enable signal. This maybe the high voltage that drives the LCD backlight or the OLED panel supply. High: Enable DC-DC converter. Low : Disable DC-DC converter.
50	BUS0	I/O	General Purpose Parallel I/O BUS(07), bit 0. This pin is 5.0V tolerant.
51	BUS1	1/0	General Purpose Parallel I/O BUS(07), bit 1. This pin is 5.0V tolerant.
52	BUS2	I/O	General Purpose Parallel I/O BUS(07), bit 2. This pin is 5.0V tolerant.
53	BUS3	1/0	General Purpose Parallel I/O BUS(07), bit 3. This pin is 5.0V tolerant.
54	BUS4	1/0	General Purpose Parallel I/O BUS(07), bit 4. This pin is 5.0V tolerant.
55	BUS5	1/0	General Purpose Parallel I/O BUS(07), bit 5. This pin is 5.0V tolerant.
56	REF	Р	Internal voltage regulator filter capacitor. Connect a 4.7uF to 10uF capacitor from this pin to Ground.
58	WR	0	Display Write strobe signal. PICASO-GFX2 asserts this signal LOW when writing data to the display. Connect this pin to the Write (WR) signal of the display.
59	RD		Display Read strobe signal. PICASO-GFX2 asserts this signal LOW when reading data from the display. Connect this pin to the Read (RD) signal of the display.
60	CS	0	Display Chip Select. PICASO-GFX2 asserts this signal LOW when accessing the display. Connect this pin to the Chip Select (CS) signal of the display.
61	RS	0	Display Register Select. LOW: Display index or status register is selected. HIGH: Display GRAM or register data is selected. Connect this pin to the Register Select (RS or A0 or C/D or similar naming convention) signal of the display.
62	IO4/BUS_RD	I/O	General Purpose IO4 pin. Also used for BUS_RD signal to read and latch the data in to the parallel GPIO BUS(07).
63	103	I/O	General Purpose IO3 pin. This pin is 5.0V tolerant.
64	102	I/O	General Purpose IO2 pin. This pin is 5.0V tolerant.

I: Input, O: Output, A: Analogue, P: Power


_

2. Pin Description

The PICASO-GFX2 provides both a hardware and a software interface. This section describes in detail the hardware interface pins of the device.

2.1 Display Interface

The PICASO-GFX2 supports LCD and OLED displays with an 80-Series 16-bit wide CPU data interface. The connectivity to the display is easy and straight forward. The PICASO-GFX2 generates all of the necessary timing to drive the display.

Display Operation Table

D0-D15 pins (Display Data Bus):

The Display Data Bus (D0-D15) is a 16-bit bidirectional port and all display data writes and reads occur over this bus. Other control signals such as RW, RD CS, and RS synchronise the data transfer to and from the display.

CS pin (Display Chip Select):

The access to the display is only possible when the Display Chip Select (CS) is asserted LOW. Connect this pin to the Chip Select (CS) signal of the

RS pin (Display Register Select):

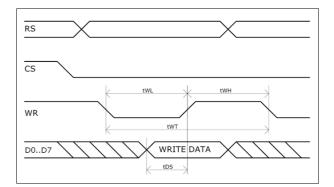
The RS signal determines whether a register

command or data is sent to the display.

- **LOW**: Display index or status register is selected.
- **HIGH**: Display GRAM or register data is selected.

Connect this pin to the Register Select (RS) signal of the display. Different displays utilise various naming conventions such as RS, A0, C/D or similar. Be sure to check with your display manufacturer for the correct name and function.

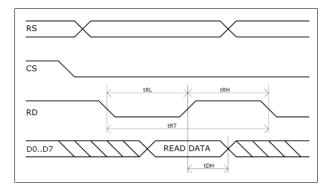
RES pin (Display Reset):


Display RESET. PICASO-GFX2 initialises the display by strobing this pin LOW. Connect this pin to the Reset (RES) signal of the display.

DCENB pin (External DC/DC Enable):

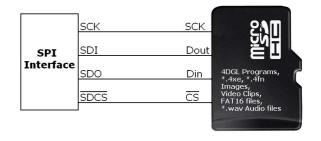
DC-DC high voltage enable signal. This maybe the high voltage that drives the LCD backlight or the OLED panel supply.

WR pin (Display Write):


This is the display write strobe signal. The PICASO-GFX2 asserts this signal LOW when writing data to the display in conjunction with the display data bus (D0-D15). Connect this pin to the Write (WR) signal of the display.

Item	Sym	Min	Тур	Max	Unit
Write Low Pulse	tWL	50	-	-	ns
Write High Pulse	tWH	50	-	-	ns
Write Bus Cycle Total	tWT	100	-	-	ns
Write Data Setup	tDS	25	-	-	ns

RD pin (Display Read):


This is the display read strobe signal. The PICASO-GFX2 asserts this signal LOW when reading data from the display in conjunction with the display data bus (D0-D15). Connect this pin to the Read (RD) signal of the display.

Item	Sym	Min	Тур	Max	Unit
Read Low Pulse	tRL	150	-	-	ns
Read High Pulse	tRH	150	-	-	ns
Read Bus Cycle Total	tRT	300	-	-	ns
Read Data Hold	tDH	75	-	-	ns

2.2 SPI Interface – Memory Card

The PICASO-GFX2 supports SD, micro-SD and MMC memory cards via its hardware SPI interface. The memory card is used for all multimedia file retrieval such as images, animations and movie clips and the SPI interface is dedicated for this purpose only. The memory card can also be used as general purpose storage for data logging applications (RAW and FAT16 format support). Support is available for uSD with up to 2GB capacity and for high capacity HC memory cards starting from 4GB and above.

SDI pin (SPI Serial Data In):

The SPI Serial Data Input (SDI). SD memory card use only. Connect this pin to the SPI Serial Data Out (SDO) signal of the memory card.

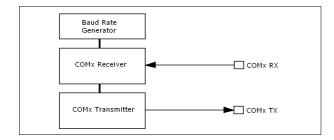
SDO pin (SPI Serial Data Out):

The SPI Serial Data Output (SDI). SD memory card use only. Connect this pin to the SPI Serial Data In (SDI) signal of the memory card.

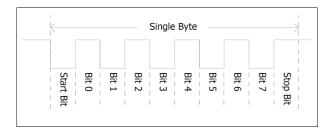
SCK pin (SPI Serial Clock):

The SPI Serial Clock output (SCK). SD memory card use only. Connect this pin to the SPI Serial Clock (SCK) signal of the memory card.

SDCS pin (SD Memory Card Chip Select):


SD Memory-Card Chip Select (SDCS). SD memory card use only. Connect this pin to the Chip Enable (CS) signal of the memory card.

2.3 Serial Ports - COM0, COM1 UARTS


The **PICASO-GFX2** has two dedicated hardware Asynchronous Serial ports that can communicate with external serial devices. These are referred to as the **COM0** and the **COM1** serial ports.

The primary features are:

- Full-Duplex 8 bit data transmission and reception.
- Data format: 8 bits, No Parity, 1 Stop bit.
- Independent Baud rates from 300 baud up to 256K baud.
- Single byte transmits and receives or a fully buffered service. The buffered service feature runs in the background capturing and buffering serial data without the user application having to constantly poll any of the serial ports. This frees up the application to service other tasks.

A single byte serial transmission consists of the start bit, 8-bits of data followed by the stop bit. The start bit is always 0, while a stop bit is always 1. The LSB (Least Significant Bit, Bit 0) is sent out first following the start bit. Figure below shows a single byte transmission timing diagram.

COMO is also the primary interface for 4DGL user program downloads and chip configuration PmmC programming. Once the compiled 4DGL application program (EVE byte-code) is downloaded and the user code starts executing, the serial port is then available to the user application. Refer to **Section 5. In-Circuit-Serial-Programming (ICSP)** for more details on PmmC programming.

TX0 pin (Serial Transmit COM0):

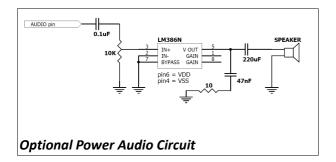
Asynchronous Serial port COM0 transmit pin, TX0. Connect this pin to external serial device receive (Rx) signal. This pin is 5.0V tolerant.

RX0 pin (Serial Receive COM0):

Asynchronous Serial port COM0 receive pin, RX0. Connect this pin to external serial device transmit (Tx) signal. This pin is 5.0V tolerant.

TX1 pin (Serial Transmit COM1):

Asynchronous Serial port COM1 transmit pin, TX1. Connect this pin to external serial device receive (Rx) signal. This pin is 5.0V tolerant.

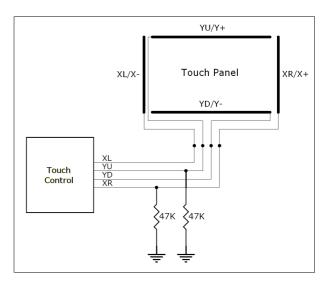

RX1 pin (Serial Receive COM1):

Asynchronous Serial port COM1 receive pin, RX1. Connect this pin to external serial device transmit (Tx) signal. This pin is 5.0V tolerant. The exclusive audio support in the PICASO-GFX2 makes it better than its peers in the Graphics processor range. PWM ensures better sound quality with a volume range of 8 to 127. A simple instruction empowers the user to execute the audio files. Audio operation can be carried out simultaneously with the execution of other necessary instructions.

For a complete list of audio commands please refer to the separate document titled '*PICASO-GFX2-4DGL-Internal-Functions.pdf*'.

AUDIO pin (Audio PWM output):

External Amplifier Output pin. This pin provides a 16-bit DAC/PWM audio output to use with an external audio amplifier. Example circuit below provides a low cost implementation. If unused then this pin must be left open or floating.


AUDENB pin (Audio Enable output):

External Amplifier enable pin. This pin provides ON/OFF amplifier control. If unused then this pin must be left open or floating.

LOW: Enable external Audio amplifier. **HIGH** : Disable external Audio amplifier.

2.5 Touch Screen Interface

The PICASO-GFX2 supports 4-Wire resistive touch panels. The diagram below shows a simplified interface between the PICASO and a touch panel.

XR pin (Touch Panel X-Read input):

4-Wire Resistive Touch Screen X-Read analog signal. Connect this pin to XR or X+ signal of the touch panel.

XL pin (Touch Panel X-Drive output):

4-Wire Resistive Touch Screen X Drive signal. Connect this pin to XL or X- signal of the touch panel.

YU pin (Touch Panel Y-Read input):

4-Wire Resistive Touch Screen Y-Read analog signal. Connect this pin to YU or Y+ signal of the touch panel.

YD pin (Touch Panel Y-Drive output):

4-Wire Resistive Touch Screen Y Drive signal. Connect this pin to YD or Y- signal of the touch panel.

2.6 GPIO - General Purpose IO Interface

There are 13 general purpose Input/Output (GPIO) pins available to the user. These are grouped as IO1..IO5 and BUSO..BUS7. The 5 I/O pins (IO1..IO5), provide flexibility of individual bit operations while the 8 pins (BUSO..BUS7), known as GPIO BUS, serve collectively for byte wise operations. The IO4 and IO5 also act as strobing signals to control the GPIO Bus. GPIO Bus can be read or written by strobing a low pulse (50 nsec duration or greater) the IO4/BUS_RD or IO5/BUS_WR for read or write respectively. For detailed usage refer to the separate document titled:

'PICASO-GFX2-4DGL-Internal-Functions.pdf'.

IO1-IO3 pins (3 x GPIO pins):

General purpose I/O pins. Each pin can be individually set for INPUT or an OUTPUT. Power-Up Reset default is all INPUTS.

IO4/BUS_RD pin (GPIO IO4 or BUS_RD pin):

General Purpose IO4 pin. Also used for BUS_RD signal to read and latch the data in to the parallel GPIO BUS0..BUS7.

IO5/BUS_WR pin (GPIO IO5 or BUS_WR pin):

General Purpose IO5 pin. Also used for BUS_WR signal to write and latch the data to the parallel GPIO BUS0..BUS7.

BUSO-BUS7 pins (GPIO 8-Bit Bus):

8-bit parallel General purpose I/O Bus.

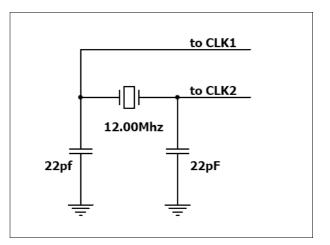
Note: All GPIO pins are 5.0V tolerant.

2.7 System Pins

VCC pins (Device Supply Voltage):

Device supply voltage pins. These pins must be connected to a regulated supply voltage in the range of 3.0 Volts to 3.6 Volts DC. Nominal operating voltage is 3.3 Volts.

GND pins (Device Ground):


Device ground pins. These pins must be connected to system ground.

RESET pin (Device Master Reset):

Device Master Reset pin. An active low pulse of greater than 2 micro-seconds will reset the device. Connect a resistor (1K through to 10K, nominal 4.7K) from this pin to VCC. Only use open collector type circuits to reset the device if an external reset is required. This pin is not driven low by any internal conditions.

CLK1, CLK2 pins (Device Oscillator Inputs):

CLK1 and CLK2 are the device oscillator pins. Connect a 12.00Mhz AT strip cut crystal with 22pf capacitors from each pin to GND as shown in the diagram below.

3. Software Platform - 4DGL

The PICASO-GFX2 belongs to a family of processors powered by a highly optimised soft core virtual engine, E.V.E. (Extensible Virtual Engine).

EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised to execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the EVE engine core. It is a high level language which is easy to learn and simple to understand yet powerful enough to tackle many embedded graphics applications.

4DGL is a graphics oriented language allowing rapid application development and the syntax structure was designed using elements of popular languages such as C, Basic, Pascal and others. Programmers familiar with these languages will feel right at home with 4DGL. It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE .. WEND, REPEAT .. UNTIL, GOSUB .. ENDSUB, GOTO, PRINT as well as some specialised instructions SERIN, SEROUT, GFX LINE, GFX CIRCLE and many more. This section only covers the syntax of the available instructions and functions. For a more in depth study refer to the following documents:

"4DGL-Programmers-Reference-Manual.pdf" "PICASO-GFX2-4DGL-Internal-Functions.pdf"

The following is a brief outline of 4DGL instructions and functions available for the PICASO-GFX2 device.

GPIO Functions:

- pin_Set(mode, pin)
 - OUTPUT, INPUT
- pin_HI(pin)
- pin_LO(pin)
- pin_Read(pin)
- bus_In()
- bus_Out("var")
- bus_Set("var")
- bus_Write("var")
- bus_Read("var")

2.2 System Memory Access Functions:

- peekW(address)
- pokeW(address, word_value)

2.3 Maths Functions:

- ABS(value)
- MIN(value1, value2)
- MAX(value1, value2)
- SWAP(&var1, &var2)
- SIN(angle)
- COS(angle)
- RAND()
- SEED(number)
- SQRT(number)
- OVF ()

2.4 Text and String Functions:

- txt_MoveCursor(line, column)
- putch(char)
- putstr(pointer)
- putnum(format, value)
- print(...)
- to(outstream)
- charwidth('char')
- charheight('char')
- strwidth(pointer)
- strheight()
- strlen(pointer)
- txt_Set(function, value)
 txt_Set shortcuts:
 - txt_FGcolour(colour)
 - txt BGcolour(colour)
 - txt FontID(id)
 - txt_Width(multiplier)
 - txt Height(multiplier)
 - txt_Xgap(pixelcount)
 - txt_Ygap(pixelcount)
 - txt_Delay(millisecs) [deprecated]
 - txt_Opacity(mode)
 - txt Bold(mode)
 - txt_ltalic(mode)
 - txt Inverse(mode)
 - txt_Underlined(mode)
 - txt Attributes(value)
 - txt_Wrap(value)

2.5 CType Functions:

- isdigit(char)
- isxdigit(char)
- isupper(char)
- islower(char)
- isalpha(char)
- isalnum(char)
- isprint(char)
- isspace(char)
- iswhite(char)
- toupper(char)
- tolower(char)
- LObyte(var)
- Hlbyte(var)
- ByteSwap(var)

2.6 Graphics Functions:

- gfx_Cls()
- gfx_ChangeColour(oldColour, newColour)
- gfx_Circle(x, y, radius, colour)
- gfx_CircleFilled(x, y, radius, colour)
- gfx_Line(x1, y1, x2, y2, colour)
- gfx_Hline(y, x1, x2, colour)
- gfx_Vline(x, y1, y2, colour)
- gfx_Rectangle(x1, y1, x2, y2, colour)
- gfx_RectangleFilled(x1, y1, x2, y2, colour)
- gfx_Polyline(n, vx, vy, colour)
- gfx_Polygon(n, vx, vy, colour)
- gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
- gfx_Dot()
- gfx_Bullet(radius)
- gfx_OrbitInit(&x_dest, &y_dest)
- gfx_Orbit(angle, distance)
- gfx_PutPixel(x, y, colour)
- gfx_GetPixel(x, y)
- gfx_MoveTo(xpos, ypos)
- gfx_MoveRel(xoffset, yoffset)
- gfx_IncX()
- gfx_IncY()
- gfx_LineTo(xpos, ypos)
- gfx_LineRel(xpos, ypos)
- gfx_BoxTo(x2, y2)
- gfx_SetClipRegion()
- gfx_Ellipse(x, y, xrad, yrad, colour)
- gfx_EllipseFilled(x, y, xrad, yrad, colour)
- gfx_Button(state, x, y, buttonColour, textColour, font, textWidth, textHeight,

text)

- gfx_Panel(state, x, y, width, height, colour)
- gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)
- gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)
- gfx_RGBto565(RED, GREEN, BLUE)
- gfx_332to565(COLOUR8BIT)
- gfx_Selection(index, backcolor, textcolor)
- gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colr)
- gfx_PolygonFilled(n, &vx, &vy, colr)
- gfx_Origin(x, y)
- gfx_Get(mode)
- gfx_ClipWindow(x1, y1, x2, y2)
- gfx_Set(function, value)

gfx_Set shortcuts:

- gfx_PenSize(mode)
- gfx_BGcolour(colour)
- gfx_ObjectColour(colour)
- gfx_Clipping(mode)
- gfx_TransparentColour(colour) not implemented
- gfx_Transparency(mode) not implemented
- gfx_FrameDelay(delay)
- gfx ScreenMode(delay)
- gfx OutlineColour(colour)
- gfx_Contrast(value)
- gfx_LinePattern(pattern)
- gfx ColourMode(mode)
- gfx BevelWidth(mode)
- gfx_BevelShadow(value)
- gfx_Xorigin(offset)
- gfx_Yorigin(offset)

2.7 Display I/O Functions:

- disp_SetReg(register, data)
- disp_setGRAM(x1, y1, x2, y2)
- disp_WrGRAM(colour)
- disp_WriteControl(value)
- disp_WriteWord(value)
- disp_ReadWord()

2.8 Media Functions (SD/SDHC memory Card or Serial Flash chip):

media_Init()

- media_SetAdd(HIword, LOword)
- media_SetSector(HIword, LOword)
- media_RdSector(Destination_Address)
- media_WrSector(Source_Address)
- media_ReadByte()
- media_ReadWord()
- media_WriteByte(byte_val)
- media_WriteWord(word_val)
- media_Flush()
- media_Image(x, y)
- media_Video(x, y)
- media_VideoFrame(x, y, frameNumber)

2.9 Flash Memory chip Functions:

- flash_SIG()
- flash_ID()
- flash_BulkErase()
- flash_BlockErase(blockAddress)

2.10 SPI Control Functions:

- spi_Init(speed,input_mode,output_mode)
- spi_Read()
- spi_Write(byte)
- spi_Disable()

2.11 Serial (UART) Communications Functions:

- setbaud(rate)
- com_SetBaud(comport, baudrate/10)
- serin() or serin1()
- serout(char) or serout1(char)
- com_Init(buffer, buffsize, qualifier) or com1_Init(buffer, buffsize, qualifier)
- com_Reset() or com1_Reset()
- com_Count() or com1_Count()
- com_Full() or com1_Full()
- com_Error() or com1_Error()
- com_Sync() or com1_Sync()
- com_TXbuffer(buf, bufsize) or com1_TXbuffer(buf, bufsize)
- com_TXcount() or com1_TXcount()
- com_TXemptyEvent(function) or com1_TXemptyEvent(function)

2.12 I2C BUS Master Function

- func I2C_Open(Speed)
- func I2C_Close()
- func I2C_Start()
- func I2C_Stop()

- func I2C_Restart()
- func I2C_Read()
- func I2C_Write(byte)
- func I2C_Ack()
- func I2C_Nack()
- func I2C_AckStatus()
- func I2C_AckPoll(control)
- func I2C_Idle()
- func I2C_Gets(buffer, size)
- func I2C_Getn(buffer, size)
- func I2C_Puts(buffer)
- func I2C_Putn(buffer,count)

2.13 Timer Functions:

- sys_T()
- sys_T_HI()
- sys_SetTimer(timernum, value)
- sys_GetTimer(timernum)
- sys_SetTimerEvent("timernum","functin")
- sys_EventQueue()
- sys_EventsPostpone()
- sys_EventsResume()
- sys_Sleep(units)
- iterator(offset)

2.14 FAT16 File Functions:

- file_Error()
- file_Count(filename)
- file_Dir(filename)
- file_FindFirst(fname)
- file_FindNext()
- file_Exists(fname)
- file_Open(fname, mode)
- file_Close(handle)
- file_Read(destination, size, handle)
- file_Seek(handle, HiWord, LoWord)
- file_Index(handle,Hisize,Losize,recrdnum)
- file_Tell(handle, &HiWord, &LoWord)
- file_Write(Source, size, handle)
- file_Size(handle, &HiWord, &LoWord)
- file_Image(x, y, handle)
- file_ScreenCapture(x, y, width, height, handle)
- file_PutC(char, handle)
- file_GetC(handle)
- file_PutW(word, handle)
- file_GetW(handle)

- file_PutS(source, handle)
- file_GetS(*String, size, handle)
- file_Erase(fname)
- file_Rewind(handle)
- file_LoadFunction(fname.4XE)
- file_Run(fname..4XE, arglistptr)
- file_Exec(fname..4XE, arglistptr)
- file_LoadImageControl(fname1, fname2, mode)
- file_Mount()
- file_Unmount()
- file_PlayWAV

2.15 Sound Control Functions:

- Snd_Volume(var)
- Snd_Pitch(pitch)
- Snd_BufSize(var)
- Snd Stop()
- Snd_Pause()
- Snd Continue()
- Snd_Playing()

2.16 String Class Functions:

- str_Ptr(&var)
- str_GetD(&ptr, &var)
- str_GetW(&ptr, &var)
- str_GetHexW(&ptr, &var)
- str_GetC(&ptr, &var)
- str_GetByte(ptr)
- str_GetWord(ptr)
- str_PutByte(ptr, val)
- str_PutWord(ptr, val)
- str_Match(&ptr, *str)
- str_MatchI(&ptr, *str)
- str_Find(&ptr, *str)
- str_Findl(&ptr, *str)
- str_Length(ptr)
- str_Printf(&ptr, *format)
- str_Cat(&destination, &Source)
- str_CatN(&ptr, str, count)

2.17 Touch Screen Functions:

- touch_DetectRegion(x1, y1, x2, y2)
- touch_Set(mode)
- touch_Get(mode)

2.18 Image Control Functions:

img_SetPosition(handle, index, xpos, ypos)

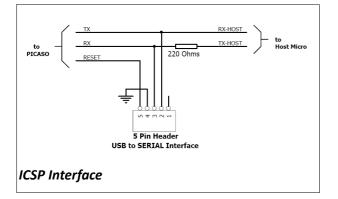
- img_Enable(handle, index)
- img_Disable(handle, index)
- img_Darken(handle, index)
- img_Lighten(handle, index)
- img_SetWord(handle, index, offset, word)
- img_GetWord(handle, index, offset)
- img_Show(handle, index)
- img_SetAttributes(handle, index, value)
- img_ClearAttributes(handle, index, value)
- img_Touched(handle, index)

2.19 Memory Allocation Functions:

- mem_Alloc(size)
- mem_Allocv(size)
- mem_Allocz(size)
- mem_Realloc(ptr, size)
- mem_Free(allocation)
- mem_Heap()
- mem_Set(ptr, char, size)
- mem_Copy(source, destination, count)
- mem_Compare(ptr1, ptr2, count)

2.20 General Purpose Functions:

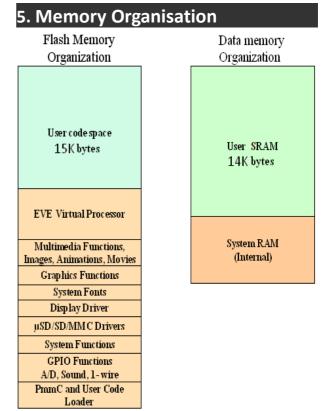
- pause(time)
- lookup8 (key, byteConstList)
- lookup16 (key, wordConstList)


To assist with the development of 4DGL applications, the 4DGL-Workshop3 IDE combines a full-featured editor, a compiler, a linker and a down-loader into a single PC-based application. It's all you need to code, test and run your applications.

4. In Circuit Serial Programming-ICSP

The PICASO-GFX2 is a custom graphics controller. All functionality including the high level 4DGL functions are built into the chip. This chip level configuration is available as a PmmC (Personalitymodule-micro-Code) file.

A PmmC file also contains all of the low level micro-code information (analogy of that of a soft silicon) which define the characteristics and functionality of the device. The ability of programming the device with a PmmC file provides an extremely flexible method of customising as well as upgrading it with future enhancements.


A PmmC file can only be programmed into the device via its COMO serial port and an access to this must be provided for on the target application board. This is referred to as In Circuit Serial Programming (ICSP). Figure below provides a typical implementation for the ICSP interface.

The PmmC file is programmed into the device with the aid of "*PmmC Loader*", a PC based software tool. To provide a link between the PC and the ICSP interface a USB to Serial converter is required. A range of custom made micro-USB devices such as the uUSB-MB5 and the uUSB-CE5 are available from 4D Systems.

Note: The PICASO-GFX2 chip is shipped blank and it must be programmed with the PmmC configuration file.

For further details refer to: 'Section 8: Development and Support Tools'.

The figure below illustrates how the PICASO-GFX2 internal memory is organised.

5.1 System Registers Memory Map

The following tables outline in detail the PICASO-GFX2 system registers and flags.

DICASO CEVI EVE System Dogistors M	omowy Mon
PICASO-GFX2 EVE System Registers M	

	ADDRESS		ЦСАСТ
LABEL	DEC	HEX	USAGE
RANDOM_LO	32	0x20	random generator LO word
RANDOM_HI	33	0x21	random generator HI word
SYSTEM_TIMER_LO	34	0x22	1msec system timer LO word
SYSTEM_TIMER_HI	35	0x23	1msec system timer HI word
TIMERO	36	0x24	1msec user timer 0
TIMER1	37	0x25	1msec user timer 1
TIMER2	38	0x26	1msec user timer 2
TIMER3	39	0x27	1msec user timer 3
TIMER4	40	0x28	1msec user timer 3
TIMER5	41	0x29	1msec user timer 3
TIMER6	42	0x2A	1msec user timer 3
TIMER7	43	0x2B	1msec user timer 3
SYS_X_MAX	44	0x2C	display hardware X res-1
SYS_Y_MAX	45	0x2D	display hardware Y res-1
GFX_XMAX	46	0x2E	width of current orientation
GFX_YMAX	47	0x2F	height of current orientation
GFX_LEFT	48	0x30	image left real point
GFX_TOP	49	0x31	image top real point
GFX_RIGHT	50	0x32	image right real point
GFX_BOTTOM	51	0x33	image bottom real point
GFX_X1	52	0x34	image left clipped point
GFX_Y1	53	0x35	image top clipped point
GFX_X2	54	0x36	image right clipped point
GFX_Y2	55	0x37	image bottom clipped point
GFX_X_ORG	56	0x38	current X origin
GFX_Y_ORG	57	0x39	current Y origin
GFX_HILITE_LINE	58	0x3A	current multi line button hilite line
GFX_LINE_COUNT	59	0x3B	count of lines in multiline button
GFX_LAST_SELECTION	60	0x3C	Last selected line
GFX_HILIGHT_BACKGROUND	61	0x3D	multi button hilite background colour
GFX_HILIGHT_FOREGROUND	62	0x3E	multi button hilite background colour

GFX_BUTTON_FOREGROUND	63	0x3F	store default text colour for hilite line tracker
GFX_BUTTON_BACKGROUND	64	0x40	store default button colour for hilite line tracker
GFX_BUTTON_MODE	65	0x41	store current buttons mode
GFX_TOOLBAR_HEIGHT	66	0x42	height above
GFX_STATUSBAR_HEIGHT	67	0x43	height below
GFX_LEFT_GUTTER_WIDTH	68	0x44	width to left
GFX_RIGHT_GUTTER_WIDTH	69	0x45	width to right
GFX_PIXEL_SHIFT	70	0x46	pixel shift for button depress illusion
GFX_VECT_X1	71	0x47	gp rect, used by multiline button to hilite required line
GFX_VECT_Y1	72	0x48	
GFX_VECT_X2	73	0x49	
GFX_VECT_Y2	74	0x4A	
GFX_THUMB_PERCENT	75	0x4B	size of slider thumb as percentage
GFX_THUMB_BORDER_DARK	76	0x4C	darker shadow of thumb
GFX_THUMB_BORDER_LIGHT	77	0x4D	lighter shadow of thumb
TOUCH_XMINCAL	78	0x4E	touch calibration value
TOUCH_YMINCAL	79	0x4F	touch calibration value
TOUCH_XMAXCAL	80	0x50	touch calibration value
TOUCH_YMAXCAL	81	0x51	touch calibration value
IMG_WIDTH	82	0x52	width of currently loaded image
IMG_HEIGHT	83	0x53	height of currently loaded image
IMG_FRAME_DELAY	84	0x54	if image, else inter frame delay for movie
IMG_FLAGS	85	0x55	bit 4 determines colour mode, other bits reserved
IMG_FRAME_COUNT	86	0x56	count of frames in a movie
IMG_PIXEL_COUNT_LO	87	0x57	count of pixels in the current frame
IMG_PIXEL_COUNT_HI	88	0x58	count of pixels in the current frame
IMG_CURRENT_FRAME	89	0x59	last frame shown
MEDIA_ADDRESS_LO	90	0x5A	uSD byte address LO
MEDIA_ADDRESS_HI	91	0x5B	uSD byte address HI
MEDIA_SECTOR_LO	92	0x5C	uSD sector address LO
MEDIA_SECTOR_HI	93	0x5D	uSD sector address HI
MEDIA_SECTOR_COUNT	94	0x5E	uSD number of bytes remaining in sector
TEXT_XPOS	95	0x5F	text current x pixel position
TEXT_YPOS	96	0x60	text current y pixel position

=

97	0x61	text left pixel pos for carriage return
98	0x62	font type, 0 = system font, else pointer to user font
99	0x63	max number of chars in font
100	0x64	starting offset (normally 0x20)
101	0x65	current font width
102	0x66	Current font height
103	0x67	touch capture region
104	0x68	
105	0x69	
106	0x6A	
107	0x6B	eft clipping point (set with gfx_ClipWindow()
108	0x6C	top clipping point (set with gfx_ClipWindow()
109	0x6D	right clipping point (set with gfx_ClipWindow()
110	0x6E	bottom clipping point (set with gfx_ClipWindow()
111	0x6F	current clip value (reads full size if clipping turned off)
112	0x70	current clip value (reads full size if clipping turned off)
113	0x71	current clip value (reads full size if clipping turned off)
114	0x72	current clip value (reads full size if clipping turned off)
115	0x73	LO word of count of pixels in the set GRAM area
116	0x74	HI word of count of pixels in the set GRAM area
sible w	ith <mark>pe</mark>	ekW and pokeW functions.
	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	98 0x62 99 0x63 100 0x64 101 0x65 102 0x66 103 0x67 104 0x68 105 0x64 106 0x67 107 0x68 106 0x64 107 0x68 108 0x60 109 0x60 110 0x62 111 0x65 112 0x70 113 0x71 114 0x72 115 0x74

_

6. Memory Cards – FAT16 Format

The PICASO-GFX2 uses off the shelf standard SDHC/SD/microSD memory cards with up to 2Gb capacity usable with FAT16 formatting. For any FAT

file related operations, before the memory card can be used it must first be formatted with FAT16 option. The formatting of the card can be done on any PC system with a card

reader. Select the appropriate drive and choose the FAT16 (or just FAT in some systems) option when formatting. The card is now ready to be used in the PICASO-GFX2 based application.

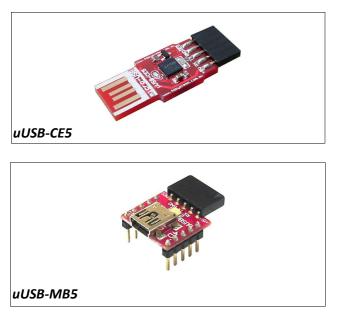
The PICASO-SGC also supports high capacity HC memory cards (4Gb and above). The available capacity of SD-HC cards varies according to the way the card is partitioned and the commands used to access it.

The FAT partition is always first (if it exists) and can be up to the maximum size permitted by FAT16. Windows will format FAT16 up to 2Gb and the Windows command prompt will format FAT16 up to 4Gb.

7. Supported Displays and Drivers

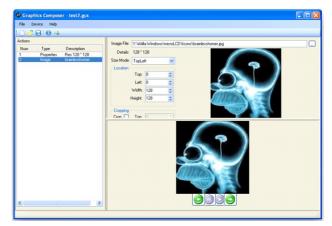
The PICASO-GFX2 supports most colour displays (CSTN, TFT, OLED) up to 640x480 resolution with an 80-Series 16 bit wide CPU interface. The chip must be initially programmed with all the display characteristics using the DISP software programming tool. The required characteristics parameters are obtained from the display driver IC data sheet which is available from the display manufacturer.

8. Development and Support Tools

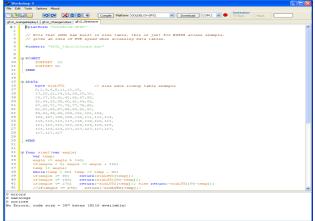

8.1 PmmC Loader – PmmC Programming Software Tool

The 'PmmC Loader' is a free software tool for Windows based PC platforms. Use this tool to program the latest PmmC file into the PICASO-GFX2 chip embedded in your application board. It is available for download from the 4D Systems website, <u>www.4dsystems.com.au</u>

Com Port:	COM4	*		
File to load: Load status:	Y:\Projects\4D LABS\	4DGL PICASO Platforms\ul	_CD-320-PMD2-4DGL_rev	1_0.pmmc
Progress:				1


8.2 microUSB – PmmC Programming Hardware Tool

The micro-USB module is a USB to Serial bridge adaptor that provides a convenient physical link between the PC and the PICASO-GFX2 device. A range of custom made micro-USB devices such as the uUSB-MB5 and the uUSB-CE5 are available from 4D Systems <u>www.4dsystems.com.au</u>. The micro-USB module is an essential hardware tool for all the relevant software support tools to program, customise and test the PICASO-GFX2 chip.


8.3 Graphics Composer – Software Tool

The Graphics Composer is a free software tool for Windows. This software tool is an aid to composing a slide show of images/animations/movie-clips (multi-media objects) which can then be downloaded into the SDHC/SD/uSD/MMC memory card that is supported by the PICASO-GFX2. The multimedia objects can then be called within the user application 4DGL program. It is available for download from the 4D Systems website, www.4dsystems.com.au

8.4 4DGL-Workshop3 – Complete IDE Editor, Compiler, Linker, Downloader

The 4DGL-Workshop3 IDE provides an integrated software development environment for all of the 4D family of processors and modules. The IDE combines the Editor, Compiler, Linker and Downloader to develop complete 4DGL application code. All user application code is developed within the Workshop IDE.

8.5 FONT Tool – Software Tool

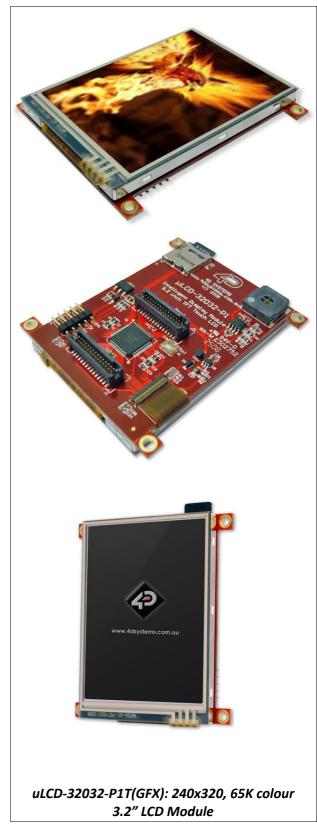
Font-Tool is a free software utility for Windows based PC platforms. This tool can be used to assist in the conversion of standard Windows fonts (including True Type) into the bitmap fonts used by the PICASO-GFX2 chip.

It is available for download from the 4D Systems website, <u>www.4dsystems.com.au.</u>

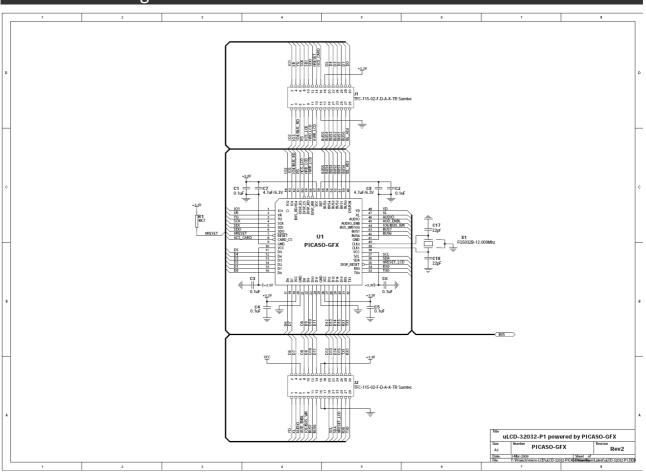
Disclaimer: Windows fonts may be protected by copyright laws. This software is provided for experimental purposes only.

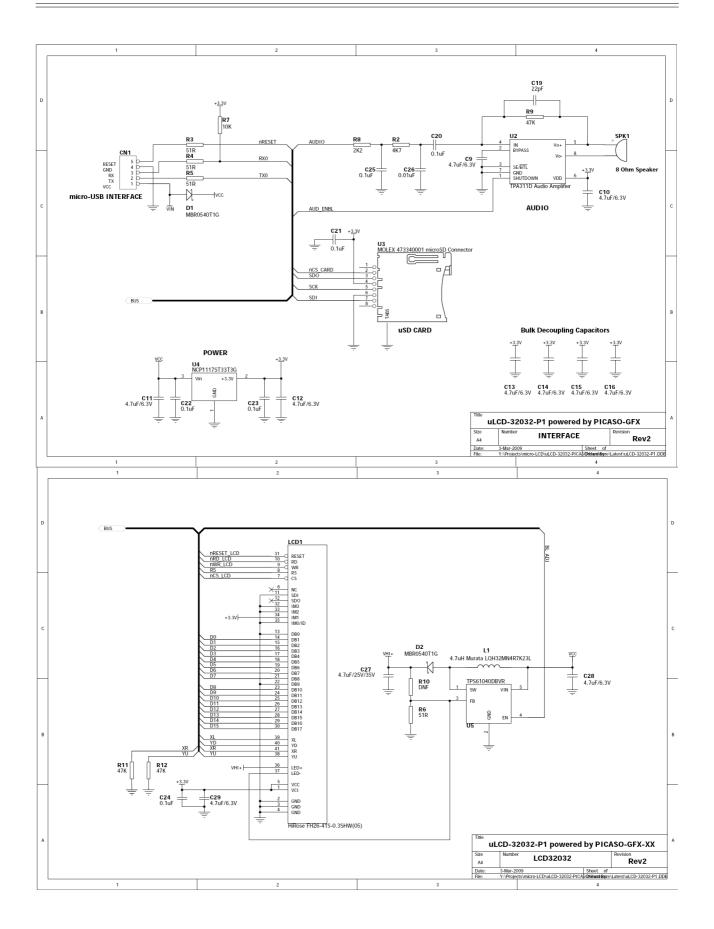
8.6 RMPET – Software Tool

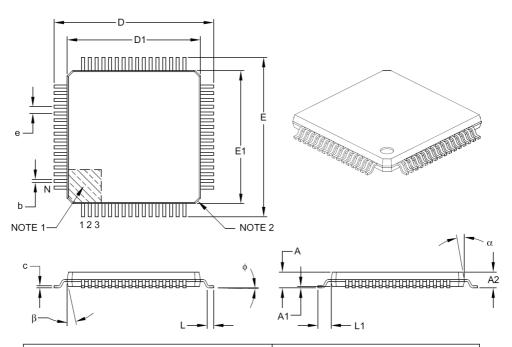
uSDHC/uSD/SD memory cards nearly always come pre-partitioned with a single partition. Windows only accesses the first partition on the card and ignores any other partitions. **R**emovable **M**edia **P**artition **E**dit **T**ool (RMPET) can split a large card into two partitions, the first partition for use as a FAT16 partition and the second partition for use as a RAW partition. RMPET allows setting of the first partition to a percentage of the card, the 2Gb maximum of the FAT16 Windows format program, or the 4Gb maximum of FAT16 when the command prompt format command is used.


Physical Drive RAV Capacity - 3.69 GB (3,965,190,144 Bytes) 7,744,512 Sectors Refresh Drive List				
Delete Partition Table	Create / Alter Partition Table	Pathlion Parameters		
Partition table Type 6 Fat16	LBA Sectors First 1 3872256	Start End Size Cylinder Sector Head Cylinder Sector Head		
DA NonFS	3872257 ◆ 3872255 1 ◆ 1			
0 Empty 💌	1			

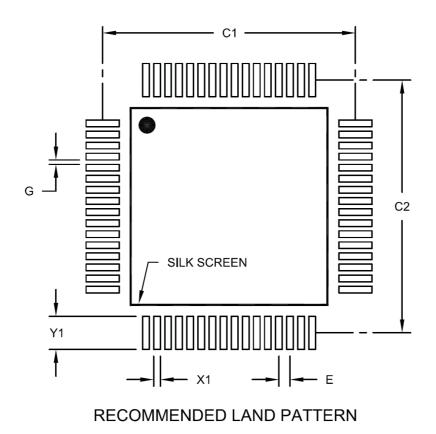
All the software tools are available for download from the 4D Systems website, <u>www.4dsystems.com.au.</u>


8.7 Evaluation Display Modules


The following modules, available from 4D Systems, can be used for evaluation purposes to discover what the PICASO-GFX2 processor has to offer.


9. Reference Design

10. Package Details and PCB Land Pattern


64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N	64			
Lead Pitch	е	0.50 BSC			
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0° 3.5° 7°			
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	old Draft Angle Bottom β 11° 12°		13°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

11. Specifications and Ratings

Absolute Maximum Ratings
Operating ambient temperature40°C to +85°C
Storage temperature65°C +150°C
Voltage on any digital input pin with respect to GND
Voltage on analogue pin with respect to GND0.3V to (VCC + 0.36V)
Voltage on VCC with respect to GND0.3V to 4.0V
Maximum current out of GND pin 300mA
Maximum current into VCC pin 250mA
Maximum output current sunk/sourced by any pin 4.0mA
Total power dissipation

NOTE: Stresses above those listed here may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the recommended operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions					
Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage (VCC)		3.0	3.3	3.6	V
Operating Temperature		-40		+80	°C
External Crystal (Xtal)			12.00		Mhz
Input Low Voltage (VIL)	VCC = 3.3V, all pins	VGND		0.2VCC	V
Input High Voltage (VIH)	VCC = $3.3V$, non 5V tolerant pins	0.8VCC		VCC	V
Input High Voltage (VIH)	All GPIO pins, RX0 and TX0 pins	0.8VCC		5.5	V

Global Characteristics based on Operating Conditions					
Parameter	Conditions	Min	Тур	Max	Units
Supply Current (ICC)	VCC = 3.3V		50	90	mA
Internal Operating Frequency	Xtal = 12.00Mhz		48.00		Mhz
Output Low Voltage (VOL)	VCC = 3.3V, IOL = 3.4mA			0.4	V
Output High Voltage (VOH)	VCC = 3.3V, IOL = -2.0mA	2.4			V
A/D Converter Resolution	XR, YU pins	8		10	bits
Capacitive Loading	CLK1, CLK2 pins			15	pF
Capacitive Loading	All other pins			50	pF
Flash Memory Endurance	PmmC Programming		1000		E/W

Ordering Information

Order Code: PICASO-GFX2 Package: TQFP-64, 10mm x 10mm Packaging: Trays of 160 pieces

Proprietary Information

The information contained in this document is the property of 4D Labs Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed with out prior written permission.

4D Labs endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development of 4D Labs products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Labs.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Labs makes no warranty, either express or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Labs be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Labs, or the use or inability to use the same, even if 4D Labs has been advised of the possibility of such damages.

Use of 4D Labs' devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Labs from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Labs intellectual property rights.

Copyright 4D Labs Pty. Ltd. 2000-2010.