
Future Technology Devices International Ltd.

Unit 1, 2 Seaward Place, CenturionBusinessPark,Glasgow, G41 1HH, United Kingdom

Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
E-Mail (Support): admin1@ftdichip.com Web: http://ftdichip.com

Copyright © 2011Future Technology Devices International Ltd.

Future Technology Devices International Ltd.

Application Note AN_177

User Guide For

LibMPSSE – I2C

Document Reference No.: FT_000466

Version 1.3

Issue Date: 2011-08-01

This application note is a guide to using the LibMPSSE-I2C – a library which simplifies the design of

firmware for interfacing to the FTDI MPSSE configured as an I2C interface. The library is available for
Windows and for Linux

 Copyright ©2011 Future Technology Devices International Ltd.1

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

Table of Contents

1 Introduction .. 2

2 System Overview .. 4

3 Application Programming Interface (API) 5

3.1 Functions .. 5

3.1.1 I2C_GetNumChannels ... 5

3.1.2 I2C_GetChannelInfo ... 5

3.1.3 I2C_OpenChannel ... 6

3.1.4 I2C_InitChannel ... 7

3.1.5 I2C_CloseChannel .. 7

3.1.6 I2C_DeviceRead ... 8

3.1.7 I2C_DeviceWrite .. 9

3.2 GPIO functions .. 10

3.2.1 FT_WriteGPIO .. 10

3.2.2 FT_ReadGPIO ... 10

3.3 Library Infrastructure Functions ... 11

3.3.1 Init_libMPSSE .. 11

3.3.2 Cleanup_libMPSSE .. 11

3.4 Data types ... 11

3.4.1 ChannelConfig .. 11

3.4.2 I2C_CLOCKRATE .. 12

3.4.3 Typedefs ... 12

4 Usage example .. 13

5 Contact Information .. 18

Appendix A – Revision History ... 20

 Copyright ©2011 Future Technology Devices International Ltd.2

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

1 Introduction

The Multi Protocol Synchronous Serial Engine (MPSSE) is generic hardware found in several

FTDI chips that allows these chips to communicate with a synchronous serial device such an

I2C device, an SPI device or a JTAG device. The MPSSE is currently available on the FT2232D,

FT2232H, FT4232H and FT232H chips, which communicate with a PC (or an application

processor) over the USB interface. Applications on a PC or on an embedded system

communicate with the MPSSE in these chips using the D2XX USB drivers.

The MPSSE takes different commands to send out data from the chips in the different formats,

namely I2C, SPI and JTAG. LibMPSSE is a library that provides a user friendly API to enable

users to write applications to communicate with the I2C/SPI/JTAG devices without needing to

understand the MPSSE and its commands. However, if the user wishes then he/she may try to

understand the working of the MPSSE and use it from their applications directly by calling

D2XX functions.

Diagram 1: The software and hardware stack through which legacy protocol data flows

As shown in the the above diagram, libMPSSE has three different APIs, one each for I2C, SPI

and JTAG. This application note only describes the I2C section.

User Application

libMPSSE
(SPI/I2C/JTAG Library)

D2XX API

USB Bus driver

FTDI USB-to-Legacy
bridge chips

Legacy protocol slave
device

 Copyright ©2011 Future Technology Devices International Ltd.3

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

The libMPSSE.dll (Linux or Windows versions), sample code, release notes and all necessary

files can be downloaded from the FTDI website at :

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-I2C/LibMPSSE-I2C_DLL_linux.zip

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-I2C/LibMPSSE-
I2C_DLL_Windows.zip

The sample source code contained in this application note is provided as an example and is

neither guaranteed nor supported by FTDI.

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-I2C/LibMPSSE-I2C_DLL_linux.zip
http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-I2C/LibMPSSE-I2C_DLL_Windows.zip
http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-I2C/LibMPSSE-I2C_DLL_Windows.zip

 Copyright ©2011 Future Technology Devices International Ltd.4

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

2 System Overview

Diagram 2: System organisation

The above diagram shows how the components of the system are typically organised. The

PC/Host may be desktop/laptop machine or an embedded system. The FTDI chip and the I2C

device would usually be on the same PCB. Though only one I2C device is shown in the diagram

above, many devices can actually be connected to the bus if each device has a different I2C

address. I2C devices that support configurable addresses will have pins which can be

hardwired to give a device an appropriate address; this information may be found in the

datasheet of the I2C device chip.

 Copyright ©2011 Future Technology Devices International Ltd.5

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

3 Application Programming Interface (API)

The libMPSSE-I2C APIs can be divided into two broad sets. The first set consists of five control

APIs and the second set consists of two data transferring APIs. All the APIs return an

FT_STATUS. This is the same FT_STATUS that is defined in the D2XX driver.

3.1 Functions

3.1.1 I2C_GetNumChannels

FT_STATUS I2C_GetNumChannels (uint32 *numChannels)

This function gets the number of I2C channels that are connected to the host
system. The number of ports available in each of these chips is different.

Parameters:

out *numChannels The number of channels connected to the host

Returns:

Returns status code of type FT_STATUS

Note:

FTDI’s USB-to-legacy bridge chips may have multiple channels in it but not all these

channels can be configured to work as I2C masters. This function returns the total

number of channels connected to the host system that has a MPSSE attached to it so

that it may be configured as an I2C master.

For example, if an FT2232D (1 MPSSE port), a FT232H (1 MPSSE port), a FT2232H (2

MPSSE port) and a FT4232H (2 MPSSE ports) are connected to a PC, then a call to

I2C_GetNumChannels would return 6 in numChannels.

Warning:

This function should not be called from two applications or from two threads at the `

 same time.

3.1.2 I2C_GetChannelInfo

FT_STATUS I2C_GetChannelInfo (uint32 index,FT_DEVICE_LIST_INFO_NODE *chanInfo)

This function takes a channel index (valid values are from 0 to the value returned by

I2C_GetNumChannels – 1) and provides information about the channel in the form of a

populated FT_DEVICE_LIST_INFO_NODE structure.

Parameters:

in index Index of the channel

out *chanInfo Pointer to FT_DEVICE_LIST_INFO_NODE structure

Returns:

http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf

 Copyright ©2011 Future Technology Devices International Ltd.6

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

Returns status code of type FT_STATUS

Note:

This API could be called only after calling I2C_GetNumChannels.

See also:

Structure definition of FT_DEVICE_LIST_INFO_NODE is in the D2XX Programmer’s

Guide.

Warning:

This function should not be called from two applications or from two threads at the `

 same time.

3.1.3 I2C_OpenChannel

FT_STATUS I2C_OpenChannel (uint32 index, FT_HANDLE *handle)

This function opens the indexed channel and provides a handle to it. Valid values for the

index of channel can be from 0 to the value obtained using I2C_GetNumChannels – 1).

Parameters:

in index Index of the channel

out handle Pointer to the handle of type FT_HANDLE

Returns:

Returns status code of type FT_STATUS

Note:

Trying to open an already open channel returns an error code.

 Copyright ©2011 Future Technology Devices International Ltd.7

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

3.1.4 I2C_InitChannel

FT_STATUS I2C_InitChannel (FT_HANDLE handle, ChannelConfig *config)

This function initializes the channel and the communication parameters associated with it.

Parameters:

in handle Handle of the channel

in config Pointer to ChannelConfig structure with the value of

clock and latency timer updated

out none

Returns:

Returns status code of type FT_STATUS

See also:

Structure definition of ChannelConfig

Note:

This function internally performs what is required to get the channel operational such as

resetting and enabling the MPSSE.

3.1.5 I2C_CloseChannel

FT_STATUS I2C_CloseChannel (FT_HANDLE handle)

Closes a channel and frees all resources that were used by it

Parameters:

in handle Handle of the channel

out none

Returns:

Returns status code of type FT_STATUS

 Copyright ©2011 Future Technology Devices International Ltd.8

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

3.1.6 I2C_DeviceRead

FT_STATUS I2C_DeviceRead(FT_HANDLE handle, uint32 deviceAddress, uint32

bytesToTransfer, uint8 *buffer, uint32 *bytesTransfered, uint32 options)

This function reads the specified number of bytes from an addressed I2C slave

Parameters:

in handle Handle of the channel

in deviceAddress Address of the I2C slave. This is a 7bit value and it

should not contain the data direction bit.

In bytesToTransfer Number of bytes to be read

out buffer Pointer to the buffer where data is to be read

out bytesTransfered Pointer to variable containing the number of bytes

read

in options This parameter specifies data transfer options. The

bit positions defined for each of these options are:

BIT0: if set then a start condition is generated in the

I2C bus before the transfer begins. A bit mask is

defined for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_START_BIT

BIT1: if set then a stop condition is generated in the

I2C bus after the transfer ends. A bit mask is defined

for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_STOP_BIT

BIT2 – BIT31: reserved

Returns:

Returns status code of type FT_STATUS

Note:

This function internally performs the following operations:

 Write START bit (if BIT0 of options flag is set)

 Write device address

 Get ACK from device

 LOOP until noOfBytes

o Read byte to buffer

o Give ACK

 Write STOP bit(if BIT1 of options flag is set)

Warning:

This is a blocking function and will not return until either the specified amount of data

are read or an error is encountered.

 Copyright ©2011 Future Technology Devices International Ltd.9

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

3.1.7 I2C_DeviceWrite

FT_STATUS I2C_DeviceWrite(FT_HANDLE handle, uint32 deviceAddress, uint32

bytesToTransfer, uint8 *buffer, uint32 *bytesTransfered, uint32 options)

This function writes the specified number of bytes to an addressed I2C slave.

Parameters:

in handle Handle of the channel

in deviceAddress Address of the I2C slave

in noOfBytes Number of bytes to be written

out buffer Pointer to the buffer from where data is to be written

out bytesTransfere

d

Pointer to variable containing the number of bytes

written

in options This parameter specifies data transfer options. The bit

positions defined for each of these options are:

BIT0: if set then a start condition is generated in the

I2C bus before the transfer begins. A bit mask is

defined for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_START_BIT

BIT1: if set then a stop condition is generated in the

I2C bus after the transfer ends. A bit mask is defined

for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_STOP_BIT

BIT2: if set then the function will return when a device

nAcks after a byte has been transferred. If not set

then the function will continue transferring the stream

of bytes even if the device nAcks. A bit mask is

defined for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_BREAK_ON_NACK

Returns:

Returns status code of type FT_STATUS

Note:

This function internally performs the following operations:

 Write START bit (if BIT0 of options flag is set)

 Write device address

 Get ACK

 LOOP until noOfBytes (or until device nAcks, if BIT2 in options is set)

o Write byte from buffer

o Get ACK

 Write STOP bit(if BIT1 of options flag is set)

Warning:

This is a blocking function and will not return until either the specified amount of data

are read or an error is encountered.

 Copyright ©2011 Future Technology Devices International Ltd.10

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

3.2 GPIO functions

Each MPSSE channel in the FTDI chips are provided with a general purpose I/O port having 8

lines in addition to the port that is used for synchronous serial communication. For example,

the FT223H has only one MPSSE channel with two 8-bit busses, ADBUS and ACBUS. Out of

these, ADBUS is used for synchronous serial communications (I2C/SPI/JTAG) and ACBUS is

free to be used as GPIO. The two functions described below have been provided to access

these GPIO lines(also called the higher byte lines of MPSSE) that are available in various FTDI

chips with MPSSEs.

3.2.1 FT_WriteGPIO

FT_STATUS FT_WriteGPIO(FT_HANDLE handle, uint8 dir, uint8 value)

This function writes to the 8 GPIO lines associated with the high byte of the MPSSE channel

Parameters:

in handle Handle of the channel

in dir Each bit of this byte represents the direction of the 8

respective GPIO lines. 0 for in and 1 for out

in value If the direction of a GPIO line is set to output, then

each bit of this byte represent the output logic state

of the 8 respective GPIO lines. 0 for logic low and 1

for logic high

Returns:

Returns status code of type FT_STATUS

3.2.2 FT_ReadGPIO

FT_STATUS FT_ReadGPIO(FT_HANDLE handle,uint8 *value)

This function reads from the 8 GPIO lines associated with the high byte of the MPSSE

channel

Parameters:

in handle Handle of the channel

out *value If the direction of a GPIO line is set to input, then

each bit of this byte represent the input logic state of

the 8 respective GPIO lines. 0 for logic low and 1 for

logic high

Returns:

Returns status code of type FT_STATUS

Note:

The direction of the GPIO line must first be set using FT_WriteGPIO function before this function

is used.

 Copyright ©2011 Future Technology Devices International Ltd.11

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

3.3 Library Infrastructure Functions

The two functions described in this section typically do not need to be called from the

user applications as they are automatically called during entry/exit time. However, these

functions are not called automatically when linking the library statically using Microsoft

Visual C++. It is then that they need to be called explicitly from the user applications.

The static linking sample provided with this manual uses a macro which checks if the

code is compiled using Microsoft 11 oolchain, if so then it automatically calls these

functions.

3.3.1 Init_libMPSSE

void Init_libMPSSE(void)

Initializes the library

Parameters:

in none

out none

Returns:

void

3.3.2 Cleanup_libMPSSE

void Cleanup_libMPSSE(void)

Cleans up resources used by the library

Parameters:

in none

out none

Returns:

void

3.4 Data types

3.4.1 ChannelConfig

ChannelConfig is a structure that holds the parameters used for initializing a channel. The following are
members of the structure:

 I2C_CLOCKRATE ClockRate

Valid range for clock divisor is from 0 to 3400000

The user can pass either I2C_CLOCK_STANDARD_MODE, I2C_CLOCK_FAST_MODE,

I2C_CLOCK_FAST_MODE_PLUS or I2C_CLOCK_HIGH_SPEED_MODE for the standard clock

rates; alternatively a value for a non standard clock rate may be passed directly.

 uint8 LatencyTimer

 Copyright ©2011 Future Technology Devices International Ltd.12

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

Required value, in milliseconds, of latency timer. Valid range is 0 – 255. However, FTDI

recommend the following ranges of values for the latency timer:

 Full speed devices (FT2232D) Range 2 – 255

 Hi-speed devices (FT232H, FT2232H, FT4232H) Range 1 - 255

 uint32 Options

 Bits of this member are used in the way described below:

Bit

number

Description Value Meaning of value Defined macro(if any)

BIT0 These bits

specify if 3-

phase-

clocking is

enabled or

disabled

0 3-phase-clocking

enabled*

1 3-phase-clocking

is disabled*

I2C_DISABLE_3PHASE_CLOCKING

BIT1 –

BIT31

Reserved

*Please note that 3-phase-clocking is available only on the hi-speed devices and not on the FT2232D

3.4.2 I2C_CLOCKRATE

I2C_CLOCKRATE is an enumerated data type that is defined as follows

 enum I2C_ClockRate_t { I2C_CLOCK_STANDARD_MODE = 100000,

 I2C_CLOCK_FAST_MODE = 400000,

 I2C_CLOCK_FAST_MODE_PLUS = 1000000,

 I2C_CLOCK_HIGH_SPEED_MODE = 3400000 }

3.4.3 Typedefs

Following are the typedefs that have been defined keeping cross platform portability in view:

 typedef unsigned char uint8

 typedef unsigned short uint16

 typedef unsigned long uint32

 typedef signed char int8

 typedef signed short int16

 typedef signed long int32

 typedef unsigned char bool

 Copyright ©2011 Future Technology Devices International Ltd.13

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

4 Usage example

This example demonstrates how to connect the MPSSE of the FT2232H configured as I2C to an I2C
device (24LC024H – EEPROM) and how to program it using libMPSSE-I2C library.

Diagram 3: Schematic for connecting FT2232H to I2C EEPROM device(24LC024H)

The above schematic shows how to connect a FT2232H chip to an I2C EEPROM. Please note

that the FT2232 chip is also available as a module which contains all the components shown in

the above schematic (except the 24LC024H and its address line pull-up resistors). This module

is called FT2232H Mini Module and details about it can be found in the device datasheet. The

FT2232H chip acts as the I2C master here and is connected to a PC using USB interface. For

the example we connected lines A0, A1 and A2 of 24LC024H chip to logic HIGH (using the 10K

pull-up resistors), this gave the chip an I2C device address of 0x57.

The required D2XX driver should be installed into the system depending on the OS that is already

installed in the PC/host. If a linux PC is used then the default drivers usbserial and ftdi_sio

must be removed (using rmmod command).

Once the hardware shown above is connected to a PC and the drivers are installed, the user

can place the following code (sample-win32-static.c), D2XX.h, libMPSSE_i2c.h and libMPSSE.a

into one folder, compile the sample and run it.

/*!
 * \file sample-static.c
 *
 * \author FTDI

http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_FT2232H_Mini_Module.pdf
http://www.ftdichip.com/Drivers/D2XX.htm

 Copyright ©2011 Future Technology Devices International Ltd.14

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

 * \date 20110512
 *
 * Copyright © 2011 Future Technology Devices International Limited
 * Company Confidential
 *
 * Project: libMPSSE
 * Module: I2C Sample Application - Interfacing 24LC02B I2C EEPROM
 *
 * Rivision History:
 * 0.1 - initial version
 * 0.2 - 20110801 - Changed LatencyTimer to 255
 * Attempt to open channel only if available
 * Added & modified macros
 * Change in APIs I2C_GetChannelInfo & OpenChannel to start indexing from 0
 */

#include<stdio.h>
#include<stdlib.h>
#ifdef _WIN32
#include<windows.h>
#endif
#include "libMPSSE_i2c.h"
#include "ftd2xx.h"

#define APP_CHECK_STATUS(exp) {if(exp!=FT_OK){printf("%s:%d:%s(): status(0x%x) != FT_OK\n",__FILE__,
__LINE__, __FUNCTION__,exp);}else{;}};
#define CHECK_NULL(exp){if(exp==NULL){printf("%s:%d:%s(): NULL expression encountered \n",__FILE__,
__LINE__, __FUNCTION__);exit(1);}else{;}};

#define I2C_DEVICE_ADDRESS_EEPROM 0x57
#define I2C_DEVICE_BUFFER_SIZE 256
#define I2C_WRITE_COMPLETION_RETRY 10
#define START_ADDRESS_EEPROM 0x00
#define END_ADDRESS_EEPROM 0x10

#define RETRY_COUNT_EEPROM 10
#define CHANNEL_TO_OPEN 0 /*0 for first available channel, 1 for next... */

uint32 channels;
FT_HANDLE ftHandle;
ChannelConfig channelConf;
FT_STATUS status;
uint8 buffer[I2C_DEVICE_BUFFER_SIZE];

uint32 write_byte(uint8 slaveAddress, uint8 registerAddress, uint8 data)
{
 uint32 bytesToTransfer = 0;
 uint32 bytesTransfered;
 bool writeComplete=0;
 uint32 retry=0;

 bytesToTransfer=0;
 bytesTransfered=0;
 buffer[bytesToTransfer++]=registerAddress; /*Byte addressed inside EEPROM's memory*/
 buffer[bytesToTransfer++]=data;
 status = I2C_DeviceWrite(ftHandle, slaveAddress, bytesToTransfer, buffer, &bytesTransfered,
I2C_TRANSFER_OPTIONS_START_BIT|I2C_TRANSFER_OPTIONS_STOP_BIT);
 APP_CHECK_STATUS(status);

 while((writeComplete==0) && (retry<I2C_WRITE_COMPLETION_RETRY))
 {
 bytesToTransfer=0;
 bytesTransfered=0;
 buffer[bytesToTransfer++]=registerAddress; /*Byte addressed inside EEPROM's memory*/
 status = I2C_DeviceWrite(ftHandle, slaveAddress, bytesToTransfer, buffer, &bytesTransfered,
I2C_TRANSFER_OPTIONS_START_BIT|I2C_TRANSFER_OPTIONS_BREAK_ON_NACK);

 if(bytesToTransfer==bytesTransfered)
 {
 writeComplete=1;
 printf("... Write done\n");
 }

 Copyright ©2011 Future Technology Devices International Ltd.15

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

 retry++;
 }
 return 0;
}

FT_STATUS read_byte(uint8 slaveAddress, uint8 registerAddress, uint8 *data)
{
 FT_STATUS status;
 uint32 bytesToTransfer = 0;
 uint32 bytesTransfered;

 bytesToTransfer=0;
 bytesTransfered=0;
 buffer[bytesToTransfer++]=registerAddress; /*Byte addressed inside EEPROM's memory*/
 status = I2C_DeviceWrite(ftHandle, slaveAddress, bytesToTransfer, buffer, &bytesTransfered,
I2C_TRANSFER_OPTIONS_START_BIT);
 bytesToTransfer=1;
 bytesTransfered=0;
 status |= I2C_DeviceRead(ftHandle, slaveAddress, bytesToTransfer, buffer, &bytesTransfered,
I2C_TRANSFER_OPTIONS_START_BIT);
 *data = buffer[0];
 return status;
}

int main()
{
 FT_STATUS status;
 FT_DEVICE_LIST_INFO_NODE devList;
 uint8 address;
 uint8 data;
 int i,j;
#ifdef _MSC_VER

 Init_libMPSSE();
#endif
 channelConf.ClockRate = I2C_CLOCK_FAST_MODE;/*i.e. 400000 KHz*/
 channelConf.LatencyTimer= 255;
 //channelConf.Options = I2C_DISABLE_3PHASE_CLOCKING;

 status = I2C_GetNumChannels(&channels);
 APP_CHECK_STATUS(status);
 printf("Number of available I2C channels = %d\n",channels);

 if(channels>0)
 {
 for(i=0;i<channels;i++)
 {
 status = I2C_GetChannelInfo(i,&devList);
 APP_CHECK_STATUS(status);
 printf("Information on channel number %d:\n",i);
 /*print the dev info*/
 printf(" Flags=0x%x\n",devList.Flags);
 printf(" Type=0x%x\n",devList.Type);
 printf(" ID=0x%x\n",devList.ID);
 printf(" LocId=0x%x\n",devList.LocId);
 printf(" SerialNumber=%s\n",devList.SerialNumber);
 printf(" Description=%s\n",devList.Description);
 printf(" ftHandle=0x%x\n",devList.ftHandle);/*always 0 unless open*/
 }

 status = I2C_OpenChannel(CHANNEL_TO_OPEN,&ftHandle);/*Open the first available channel*/
 APP_CHECK_STATUS(status);
 printf("\nhandle=%d status=%d\n",ftHandle,status);
 status = I2C_InitChannel(ftHandle,&channelConf);

 for(address=START_ADDRESS_EEPROM;address<END_ADDRESS_EEPROM;address++)
 {
 printf("writing byte at address = %d ",address);
 write_byte(I2C_DEVICE_ADDRESS_EEPROM,address,address+1);
 }

 Copyright ©2011 Future Technology Devices International Ltd.16

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

 for(address=START_ADDRESS_EEPROM;address<END_ADDRESS_EEPROM;address++)
 {
 status = read_byte(I2C_DEVICE_ADDRESS_EEPROM,address, &data);
 for(j=0; ((j<RETRY_COUNT_EEPROM) && (FT_OK !=status)); j++)
 {
 printf("read error... retrying \n");
 status = read_byte(I2C_DEVICE_ADDRESS_EEPROM,address, &data);
 }
 printf("address %d data read=%d\n",address,data);
 }
 status = I2C_CloseChannel(ftHandle);
 }

#ifdef _MSC_VER
 Cleanup_libMPSSE();
#endif

 return 0;
}

The sample program shown above writes to address 0 through 14 in the EEPROM chip. The

value that is written is address+1, i.e. if the address is 5 then a value 6 is written to that

address. When this sample program is compiled and run, we should see an output like the one

shown below:

Diagram 4: Sample output on windows

 Copyright ©2011 Future Technology Devices International Ltd.17

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

Diagram 5: Sample output on linux III

 Copyright ©2011 Future Technology Devices International Ltd.18

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

5 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited

Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 547 0988

Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
Shanghai, 200051
China

Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com/
http://www.ftdichip.com/
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com/
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
http://www.ftdichip.com/
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://www.ftdichip.com/

 Copyright ©2011 Future Technology Devices International Ltd.19

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd
(FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related
information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI
has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any
applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to
defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change
without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part
of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior
written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41
1HH, United Kingdom. Scotland Registered Company Number: SC136640

http://ftdichip.com/

 Copyright ©2011 Future Technology Devices International Ltd.20

Document Reference No.: FT_000466

Application Note AN 177 Programming Guide for LibMPSSE - I2C Version 1.3

Clearance No.: FTDI #210

Appendix A – Revision History

Revision Changes Date

1.0 Initial Release 2011-05-23

1.1

Corrected section 3.1.2 : I2C_GetNumChannels -1

Corrected section 3.2.3 : wrong typedef uintT32

Corrected heading on sections 3.1.3 to 3.1.7 which had wrong
text

Corrected TOC

2011-05-25

1.2

Added section “Library Infrastructure Functions”

Updated sample application

Added linux specific guidelines and download files

2011-06-22

1.3

Added GPIO functions.

Added option to disable 3-phase-clocking.

Renamed I2C_Device_Read / I2C_Device_Write to
I2C_DeviceRead / I2C_DeviceWrite

Added note on latency timer value

Updated sample application

2011-08-01

	1 Introduction
	2 System Overview
	3 Application Programming Interface (API)
	3.1 Functions
	3.1.1 I2C_GetNumChannels
	Parameters:
	Returns:
	Note:
	Warning:

	3.1.2 I2C_GetChannelInfo
	Parameters:
	Returns:
	Note:
	See also:
	Warning:

	3.1.3 I2C_OpenChannel
	Parameters:
	Returns:
	Note:

	3.1.4 I2C_InitChannel
	Parameters:
	Returns:
	See also:
	Note:

	3.1.5 I2C_CloseChannel
	Parameters:
	Returns:

	3.1.6 I2C_DeviceRead
	Parameters:
	Returns:
	Note:
	Warning:

	3.1.7 I2C_DeviceWrite
	Parameters:
	Returns:
	Note:
	Warning:

	3.2 GPIO functions
	3.2.1 FT_WriteGPIO
	Parameters:
	Returns:

	3.2.2 FT_ReadGPIO
	Parameters:
	Returns:
	Note:

	3.3 Library Infrastructure Functions
	3.3.1 Init_libMPSSE
	Parameters:
	Returns:

	3.3.2 Cleanup_libMPSSE
	Parameters:
	Returns:

	3.4 Data types
	3.4.1 ChannelConfig
	3.4.2 I2C_CLOCKRATE
	3.4.3 Typedefs

	4 Usage example
	5 Contact Information
	Appendix A – Revision History

